import { convertToCoreMessages, streamText as _streamText, type Message } from 'ai'; import { MAX_TOKENS, PROVIDER_COMPLETION_LIMITS, isReasoningModel, type FileMap } from './constants'; import { getSystemPrompt } from '~/lib/common/prompts/prompts'; import { DEFAULT_MODEL, DEFAULT_PROVIDER, MODIFICATIONS_TAG_NAME, PROVIDER_LIST, WORK_DIR } from '~/utils/constants'; import type { IProviderSetting } from '~/types/model'; import { PromptLibrary } from '~/lib/common/prompt-library'; import { allowedHTMLElements } from '~/utils/markdown'; import { LLMManager } from '~/lib/modules/llm/manager'; import { createScopedLogger } from '~/utils/logger'; import { createFilesContext, extractPropertiesFromMessage } from './utils'; import { discussPrompt } from '~/lib/common/prompts/discuss-prompt'; import type { DesignScheme } from '~/types/design-scheme'; export type Messages = Message[]; export interface StreamingOptions extends Omit[0], 'model'> { supabaseConnection?: { isConnected: boolean; hasSelectedProject: boolean; credentials?: { anonKey?: string; supabaseUrl?: string; }; }; } const logger = createScopedLogger('stream-text'); function getCompletionTokenLimit(modelDetails: any): number { // 1. If model specifies completion tokens, use that if (modelDetails.maxCompletionTokens && modelDetails.maxCompletionTokens > 0) { return modelDetails.maxCompletionTokens; } // 2. Use provider-specific default const providerDefault = PROVIDER_COMPLETION_LIMITS[modelDetails.provider]; if (providerDefault) { return providerDefault; } // 3. Final fallback to MAX_TOKENS, but cap at reasonable limit for safety return Math.min(MAX_TOKENS, 16384); } function sanitizeText(text: string): string { let sanitized = text.replace(/
.*?<\/div>/s, ''); sanitized = sanitized.replace(/.*?<\/think>/s, ''); sanitized = sanitized.replace(/[\s\S]*?<\/boltAction>/g, ''); return sanitized.trim(); } export async function streamText(props: { messages: Omit[]; env?: Env; options?: StreamingOptions; apiKeys?: Record; files?: FileMap; providerSettings?: Record; promptId?: string; contextOptimization?: boolean; contextFiles?: FileMap; summary?: string; messageSliceId?: number; chatMode?: 'discuss' | 'build'; designScheme?: DesignScheme; }) { const { messages, env: serverEnv, options, apiKeys, files, providerSettings, promptId, contextOptimization, contextFiles, summary, chatMode, designScheme, } = props; let currentModel = DEFAULT_MODEL; let currentProvider = DEFAULT_PROVIDER.name; let processedMessages = messages.map((message) => { const newMessage = { ...message }; if (message.role === 'user') { const { model, provider, content } = extractPropertiesFromMessage(message); currentModel = model; currentProvider = provider; newMessage.content = sanitizeText(content); } else if (message.role == 'assistant') { newMessage.content = sanitizeText(message.content); } // Sanitize all text parts in parts array, if present if (Array.isArray(message.parts)) { newMessage.parts = message.parts.map((part) => part.type === 'text' ? { ...part, text: sanitizeText(part.text) } : part, ); } return newMessage; }); const provider = PROVIDER_LIST.find((p) => p.name === currentProvider) || DEFAULT_PROVIDER; const staticModels = LLMManager.getInstance().getStaticModelListFromProvider(provider); let modelDetails = staticModels.find((m) => m.name === currentModel); if (!modelDetails) { const modelsList = [ ...(provider.staticModels || []), ...(await LLMManager.getInstance().getModelListFromProvider(provider, { apiKeys, providerSettings, serverEnv: serverEnv as any, })), ]; if (!modelsList.length) { throw new Error(`No models found for provider ${provider.name}`); } modelDetails = modelsList.find((m) => m.name === currentModel); if (!modelDetails) { // Check if it's a Google provider and the model name looks like it might be incorrect if (provider.name === 'Google' && currentModel.includes('2.5')) { throw new Error( `Model "${currentModel}" not found. Gemini 2.5 Pro doesn't exist. Available Gemini models include: gemini-1.5-pro, gemini-2.0-flash, gemini-1.5-flash. Please select a valid model.`, ); } // Fallback to first model with warning logger.warn( `MODEL [${currentModel}] not found in provider [${provider.name}]. Falling back to first model. ${modelsList[0].name}`, ); modelDetails = modelsList[0]; } } const dynamicMaxTokens = modelDetails ? getCompletionTokenLimit(modelDetails) : Math.min(MAX_TOKENS, 16384); // Use model-specific limits directly - no artificial cap needed const safeMaxTokens = dynamicMaxTokens; logger.info( `Token limits for model ${modelDetails.name}: maxTokens=${safeMaxTokens}, maxTokenAllowed=${modelDetails.maxTokenAllowed}, maxCompletionTokens=${modelDetails.maxCompletionTokens}`, ); let systemPrompt = PromptLibrary.getPropmtFromLibrary(promptId || 'default', { cwd: WORK_DIR, allowedHtmlElements: allowedHTMLElements, modificationTagName: MODIFICATIONS_TAG_NAME, designScheme, supabase: { isConnected: options?.supabaseConnection?.isConnected || false, hasSelectedProject: options?.supabaseConnection?.hasSelectedProject || false, credentials: options?.supabaseConnection?.credentials || undefined, }, }) ?? getSystemPrompt(); if (chatMode === 'build' && contextFiles && contextOptimization) { const codeContext = createFilesContext(contextFiles, true); systemPrompt = `${systemPrompt} Below is the artifact containing the context loaded into context buffer for you to have knowledge of and might need changes to fullfill current user request. CONTEXT BUFFER: --- ${codeContext} --- `; if (summary) { systemPrompt = `${systemPrompt} below is the chat history till now CHAT SUMMARY: --- ${props.summary} --- `; if (props.messageSliceId) { processedMessages = processedMessages.slice(props.messageSliceId); } else { const lastMessage = processedMessages.pop(); if (lastMessage) { processedMessages = [lastMessage]; } } } } const effectiveLockedFilePaths = new Set(); if (files) { for (const [filePath, fileDetails] of Object.entries(files)) { if (fileDetails?.isLocked) { effectiveLockedFilePaths.add(filePath); } } } if (effectiveLockedFilePaths.size > 0) { const lockedFilesListString = Array.from(effectiveLockedFilePaths) .map((filePath) => `- ${filePath}`) .join('\n'); systemPrompt = `${systemPrompt} IMPORTANT: The following files are locked and MUST NOT be modified in any way. Do not suggest or make any changes to these files. You can proceed with the request but DO NOT make any changes to these files specifically: ${lockedFilesListString} --- `; } else { console.log('No locked files found from any source for prompt.'); } logger.info(`Sending llm call to ${provider.name} with model ${modelDetails.name}`); // Log reasoning model detection and token parameters const isReasoning = isReasoningModel(modelDetails.name); logger.info( `Model "${modelDetails.name}" is reasoning model: ${isReasoning}, using ${isReasoning ? 'maxCompletionTokens' : 'maxTokens'}: ${safeMaxTokens}`, ); // Validate token limits before API call if (safeMaxTokens > (modelDetails.maxTokenAllowed || 128000)) { logger.warn( `Token limit warning: requesting ${safeMaxTokens} tokens but model supports max ${modelDetails.maxTokenAllowed || 128000}`, ); } // Use maxCompletionTokens for reasoning models (o1, GPT-5), maxTokens for traditional models const tokenParams = isReasoning ? { maxCompletionTokens: safeMaxTokens } : { maxTokens: safeMaxTokens }; // Filter out unsupported parameters for reasoning models const filteredOptions = isReasoning && options ? Object.fromEntries( Object.entries(options).filter( ([key]) => ![ 'temperature', 'topP', 'presencePenalty', 'frequencyPenalty', 'logprobs', 'topLogprobs', 'logitBias', ].includes(key), ), ) : options || {}; // DEBUG: Log filtered options logger.info( `DEBUG STREAM: Options filtering for model "${modelDetails.name}":`, JSON.stringify( { isReasoning, originalOptions: options || {}, filteredOptions, originalOptionsKeys: options ? Object.keys(options) : [], filteredOptionsKeys: Object.keys(filteredOptions), removedParams: options ? Object.keys(options).filter((key) => !(key in filteredOptions)) : [], }, null, 2, ), ); const streamParams = { model: provider.getModelInstance({ model: modelDetails.name, serverEnv, apiKeys, providerSettings, }), system: chatMode === 'build' ? systemPrompt : discussPrompt(), ...tokenParams, messages: convertToCoreMessages(processedMessages as any), ...filteredOptions, // Set temperature to 1 for reasoning models (required by OpenAI API) ...(isReasoning ? { temperature: 1 } : {}), }; // DEBUG: Log final streaming parameters logger.info( `DEBUG STREAM: Final streaming params for model "${modelDetails.name}":`, JSON.stringify( { hasTemperature: 'temperature' in streamParams, hasMaxTokens: 'maxTokens' in streamParams, hasMaxCompletionTokens: 'maxCompletionTokens' in streamParams, paramKeys: Object.keys(streamParams).filter((key) => !['model', 'messages', 'system'].includes(key)), streamParams: Object.fromEntries( Object.entries(streamParams).filter(([key]) => !['model', 'messages', 'system'].includes(key)), ), }, null, 2, ), ); return await _streamText(streamParams); }